

Climate change from a beef and lamb perspective

Chris Lloyd, EBLEX

The Challenge Ahead

- UK's Low Carbon Transition Plan calls for 18% reduction on 2008 levels of 610 millions tonnes of CO₂ Eq
- Farmings 2020 target is 11% reduction
- Huge area of activity in Defra and beyond
- Challenges to reduce livestock numbers

EBLEX Roadmap Phase 1

GWP of Beef and Lamb Cranfield Life Cycle Analysis

EBLEX

Based on Deadweight

$\textbf{Beef GWP}_{100} \textbf{ CO}_2 \textbf{ eq}$

2008 Baseline	GWP ₁₀₀ kg CO ₂ eq/ kg
Lowland suckler 19%	17.12
Hill/ Upland suckler 30%	16.98
Dairy beef	10.97
51%	

Sheep $GWP_{100} CO_2 eq$

2008 Baseline		GWP ₁₀₀ kg CO ₂ eq/ kg
Hill	39%	18.44
Upland	30%	16.62
Lowland	31%	13.82

EBLEX 2009

NB Deadweight

EBLEX Roadmap Phase 2

- On farm CO₂ audits
- Water Footprints
- Processing CO₂
- •Non food benefits of livestock.

Production footprints

- Surveyed 60 English farms using ECO₂ model
- Received 67 extra beef farms from McDonalds
- Findings.....

Beef Production footprints kg CO₂eq/ kg LW Beef

Overall kg CO₂eq/kg LW

– Top Third	6.2		
– Average	11.9	Highest Lowest	26.9 3.2
– Bottom Third	19.1		

	Upland Suckler	Lowland suckler	Dairy Beef	Bull Beef
Averages	15.7	19.2	11.8	10.6
	(15.7)		(10)	

Surveyed 30 English farms using ECO2 model (MacDonald's Data)

Sheep Production Footprints

- Overall kg CO₂eq/ kg LW Lamb
 - Top Third
 Average
 Bottom Third
 14.6
 Highest
 Highest

	Hill	Upland	Lowland
Averages	13.6	11.0	11.1

Surveyed 30 farms in England using ECO2 model

Water and Energy Use in Meat Processing Sector

Water and Energy use per kg of meat

	Water	Energy	Kg CO ₂	Effluent Discharges
Beef	3.6litres	0.63kWh	0.27	3.1litres
Lamb	2.5litres	0.54kWh	0.23	2.1 litres

Total Meat Industry Water Use 7.2m litres

Soft Drinks Industry

27.5m litres sou

source Defra

EBLEX Roadmap Phase 3

- On farm CO2 audits
- Low carbon case studies
- Retailer mitigation activity
- Sequestration review
- Supply chain waste project

2011 Beef Footprints

Beef farm footprints 131 units in total	2011kg CO2e/ kg lw	2010 kg CO2e/ kg lw
Average	12.2	11.9
Lowest	3.0	3.2
Highest	29.7	26.9

Includes data kindly supplied by MacDonalds from their own EC02 survey.

2011 Beef Footprints

System type	Average beef (kg CO2e/ kg lw)	Average stores figure (kg CO2e/ kg lw)
Dairy beef	8.6	-
Finisher	10.5	-
Rearer finisher	15.2	_
Lowland producer taking calves to store	-	15.7
Upland producer taking calves to store	-	13.4

2011 Sheep Foot Prints

57 Sheep farms selling finished animals)	kg CO2e/ kg lw	kg CO2e/ kg dw
Average	11.86	25.79
Lowest	6.43	13.98
Highest	19.71	42.85

2011 Sheep Foot Prints

System type	Average finished (kg CO2e/ kg lw)	Range (kg CO2e/ kg lw)
Lowland sheep farms (31 farms)	10.98	6.43 - 17.78
Upland sheep farms (11 farms)	10.86	8.97 - 15.35
Hill farms (15 farms)	14.42	8.42 - 19.71

We know how to improve!!

- 1. Increase feed efficiency
- 2. Increase fertility
- 3. Increase longevity

WIN WIN... this will also improve margins!

Improving efficiency

- Reduce calving period
- Improve pasture management and utilisation
- Reduce lamb and calf mortality
- Use best genetics, use EBV's for selection
- Increase cow and ewe longevity

Distribution of Scan Weight EBVs in British Texel Sheep

Proportion of lambs with Scan Weight EBV over 5kg in 1992 = 4% Proportion of lambs with Scan Weight EBV over 5kg in 2010 = 67%

Conclusions

- The relationship between food supply, resource use, biodiversity, landscape and water is complex.
- Measuring the livestock industry on C02 alone is too simplistic
- Food supply demands mean addressing GHG issues proactively for years to come
- We are improving our understanding of CO₂ drivers which will help target future work.
- Improved economic performance goes hand in hand with lower CO₂ eq costs of production

Conclusions 2

- Cattle and sheep produce valuable products for human consumption but at a GHG "cost"
- We can reduce GHG cost considerably if we apply what we know
- Large areas of the UK cannot reasonably produce food for people without cattle or sheep
- Unless consumer behaviour changes reducing production at home will simply export the problem

Conclusions 3

- Industry has to OWN this issue.
- We can and should make a contribution to reducing the C footprint of production
- We should robustly defend the role of ruminants in food production, soil management as a carbon sink, habitat management and landscape management.

Thank You

Water Footprint

Blue water

- From a pipe

Green Water - Rainfall

Grey Water

- To dilute pollutants to acceptable levels

Calculations by Cranfield University using LCA industry structure

Water use in English Beef Production

litres of water per kg of carcase

	Blue Water	Green Water	Grey Water	Total
Lowland suckler	78	15,600	3,490	19,168
Hill Suckler	103	44,200	3,080	47,383
Dairy beef	45	8,150	1,980	10,175

Water use in English Sheep Production

litres of water per kg of carcase

	Blue Water	Green Water	Grey Water	Total
Lowland	31	21,800	2,550	24,381
Upland	40	24,700	2,600	27,340
Hill	85	135,000	205	135,290
Average	49	55,800	1,910	57,759